
1

Argonne National Laboratory

Introduction to Parallel
Programming

Introduction to Concepts
and Methods

Katherine Riley

2

Jazz LCRC

Intent

 Assuming some knowledge about serial
computing, walk away from these
lectures with a basic understanding of:
 Parallel programming terminology
 Parallel computing architectures
 Parallel programming models
 Some existing methods and tools to help

3

Jazz LCRC

The Laboratory Computing
Resource Center (LCRC)

 Founded in 2002 to promote wide spread use of
high performance computing across the lab

 LCRC Application Engineers
 Jazz

 Compute - 350 nodes, each with a 2.4 GHz Pentium
Xeon

 Memory - 175 nodes with 2 GB of RAM, 175 nodes
with 1 GB of RAM

 Storage - 20 TB of clusterwide disk: 10 TB GFS and 10
TB PVFS

 Network - Myrinet 2000 4

Jazz LCRC

Outline

 Define Parallel Programming
 Parallel Architecture
 Parallel Programming Models
 When to Parallelize
 Overview: How to Parallelize Code

2

5

Jazz LCRC

What is Parallelism?

6

Jazz LCRC

Serial Computing

 Traditional computing model
 One CPU
 One copy of the data

 The CPU performs one
operation at a time.
 Single Instruction, Single Data

(SISD)

 Single task is implemented

CPU

Memory

7

Jazz LCRC

Parallel Computing

 Simultaneous use of multiple computing
resources to solve a problem.

 Parallel computing
 Breaks serial tasks into multiple tasks
 Works on tasks simultaneously
 Coordinates those tasks

8

Jazz LCRC

Why Parallel Compute?

 Potential faster time to solution
 CPU limitations

 Solve larger problems
 Memory limitations

 Cost savings
 Cheap PCs linked rather than more

expensive architectures

3

9

Jazz LCRC

Parallel Computing Hardware

 Single computer, multiple CPUs
 Multiple computers, connected by

network
 A combination of the two

10

Jazz LCRC

Parallel Programming Model

 Defines how the programmer creates and
coordinates parallel tasks

 Architecture, libraries, compilers, tools
 Create the model
 Directs parts of algorithm
 Does not map one to one to architecture

11

Jazz LCRC

Basic Parallel Architecture

12

Jazz LCRC

Why Talk About Architecture?

 Helps understand methods of
parallelizing codes

 Useful when parallelizing algorithms
 Can make parallel choices easier

 Useful for performance
 Get the buzz words

4

13

Jazz LCRC

Architecture Taxonomy

 SISD : Single Instruction, Single Data
 Traditional Serial Computing

 SIMD : Singe Instruction, Multiple Data
 Vector Pipelines

 MISD : Multiple Instruction, Single Data
 Rare

 MIMD : Multiple Instruction,Multiple Data
 Standard Parallel Computers

14

Jazz LCRC

SISD

 Standard serial
computing model

 One copy of the data

 Sequentially compute
 One instruction per

clock cycle
CPU

Memory

15

Jazz LCRC

SIMD

 Like SISD, but, each
instruction can
operate on multiple
data

 Multiple data
streams, one
instruction

 Vector machine

CPU

Memory

16

Jazz LCRC

MIMD

 Very common: All multiple processor
configurations

 Each processor executes a totally
independent instruction stream on
independent data stream

 Can be affordable
 Requires load balancing
 Can be difficult to program

5

17

Jazz LCRC

MIMD : Shared Memory

 Symmetric Multiprocessor
 SMP

 Each CPU is operating on
different data, even though
it is all in the same physical
memory

 Pros
 Easy for user to utilize
 Data sharing is fast

 Cons
 Bandwidth clogs

MemoryCPU CPU

CPU

CPU

18

Jazz LCRC

MIMD : Distributed Memory

 Massively Parallel
Processors (MPP)

 Multiple SISD systems
linked together with a
network.

 The network moves the
model from SISD to a MIMD

 Pro :Memory scalable
 Con

 Harder to program
 Bandwidth

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

19

Jazz LCRC

MIMD : Hybrid Distributed
Memory

 MPP Memory Arch.
 Multiple SMP-like

systems (PCs) linked
together with a network.

 The network moves the
model from SISD to a
MIMD

 Hybrid of shared
memory and distributed

Memory

C
PU

C
PU

Memory

Memory

Memory

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

20

Jazz LCRC

Memory Architectures

 Shared Memory
 Multiple processors, one memory

 Global address space
 Each process has equal access to memory
 UMA, CC-UMA, NUMA, CC-NUMA

 Distributed Memory
 Each processor has own address space
 Requires communication/messages to

exchange data with other processors

6

21

Jazz LCRC

Parallel Programming
Models

22

Jazz LCRC

What is a Parallel
Programming Model?

 Method by which the programmer creates
parallel tasks
 An abstraction of the architecture

 Models do not map one-to-one to architectures
 How to choose the model?

 Architecture
 Algorithm
 Capabilities/Time/Resources

23

Jazz LCRC

High-Level Models

 SPMD : Single Process, Multiple Data
 Every process

 running the same executable
 has different data
 can have logic to allow different processes to perform

different tasks

 MPI
 MPMD : Multiple Process, Multiple Data

 Every process
 can execute the same or a different executable
 will work on different data

24

Jazz LCRC

High-Level Models - Schematic

a.out a.out a.out a.out

a.out b.out c.out a.out

…

…

SPMD

MPMD

tasks

7

25

Jazz LCRC

Lower Level Models
 Shared Memory

 Global memory space
 Data Parallel

 Shared or Distributed memory splitting a larger data
structure

 Message Passing
 MPI, PVM, libraries using message passing

 Threads
 One process, one memory space, multiple threads

 Hybrid
 Ex: Threads and Message Passing

26

Jazz LCRC

Shared Memory and Threads

 Shared Memory - shmem
 Can be very easy to use
 Hardware often more expensive, less common

 Threads - OpenMP, POSIX
 Used on shared memory and hybrid systems
 Harder to use, but, very flexible
 Threads+Message Passing

 One of the best ways to make use of hybrid
systems

27

Jazz LCRC

Data Parallel

 Each processor works on different part of
the same data structure
 Data split across processors
 Messages are invisible

 Often built on top of message passing library

 SPMD approach

28

Jazz LCRC

Data Parallel Implementations

 Data parallel constructs added to code
and compiled with data parallel compiler

 Implementations
 F90/HPF Implementations
 Global Arrays

8

29

Jazz LCRC

Message Passing

 Set of processors only using local memory
 Processors communicate

 Send/Receive data
 Synchronization

 Library Implementations
 MPI, PVM

30

Jazz LCRC

Pro’s and Cons

 Shared Memory and Data Parallel
 Pro: Easy for programmer

 Normally done mostly by compiler

 Con: Memory ownership less clear
 Con: Potential higher cost of hardware

 Threads and Message Passing
 Pro: Can make excellent use of hybrid architectures
 Con: Everything done explicitly by programmer

 Need a good deal of knowledge to implement well

31

Jazz LCRC

Automatic Parallelization

 Fully Automatic
 Compiler parses code

 Programmer Directed
 In-line directives
 Compiler flags

32

Jazz LCRC

Problems with Automatic

 Wrong results may be produced
 Performance may degrade
 Limited to what it can identify

 Loops
 Complex code not helped

 Most automatic parallelization tools are
for Fortran (HPF)

So, we go with manual methods

9

33

Jazz LCRC

How To Parallelize

34

Jazz LCRC

When to Parallelize - Revisited

 Limited by memory
 After fully optimized serial version

 CPU and Memory usage

 Potential faster time to solution
 Dependant on algorithm.

 Without care, time could be longer!
 Problem Size, Algorithm, Hardware capabilities

 Resources

35

Jazz LCRC

Drawbacks to Parallelizing

 Time
 Learning, Implementing, Debugging

 Program Complexity
 Algorithms/Flow can be less clear
 Need more software support

 Reduces portability/reusability
 Tied to software availability
 Performance for few architectures

36

Jazz LCRC

Parallelization Process

 What code needs to be parallel and why
 PDE solve, search, image analysis, FFT …

 Has someone else done the work?
 Google is your friend

 Write the code
 If existing in serial, fully debug and optimize

 Debug, Test, and Optimize

10

37

Jazz LCRC

Design Considerations

 Granularity
 Ratio between computation and communication
 Fine Grain/Coarse Grain

 Data dependency
 A[I] = (A[I-1]+A[I+1])/2

 I/O
 Deadlock

 Parallelism gets trapped

38

Jazz LCRC

New Code Components

 Initialization
 Query parallel state

 Identify process
 Identify number of processes

 Exchange data between processes
 Local, Global

 Synchronization
 Barriers, Blocking Communication, Locks

 Finalization

39

Jazz LCRC

The Basic MPI Code

program hello
implicit none
include ’mpif.h’
integer id,nprocs,ierr
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,nprocs,ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,id,ierr)
print*,*”Hello from processor”,id,”out of”,nprocs
call MPI FINALIZE(ierr)
end

40

Jazz LCRC

I/O

 I/O is design and performance limiter
 Large communication and time costs

 Libraries in serial and parallel
 NetCDF, HDF5
 Even in serial can help with design

 Parallel File Systems improving
 Parallelizing I/O a big topic

 Similar process to parallelizing code
 Keep I/O to a minimum

11

41

Jazz LCRC

Deadlock

 A condition where two or more tasks are
waiting for a message that will never come

Receive
Task2, Y

Send
Task2, X

X = 4
Task 1

Receive
Task2, X

Send
Task2, Y

Y = 4
Task 2

 Change order of
send/recvs

 Change
algorithm

 Change to non-
blocking
communication

42

Jazz LCRC

Performance Considerations
 Amdahl’s Law

 Potential code speedup is a function of the
code that can be parallelized(P)

 Load Balancing
 Communication/Bandwidth
 I/O

N : Number of processes
S: 1-P, fraction of code that is serial

43

Jazz LCRC

Load Balancing

 Might be the hardest component
 Balance communication/computation

 Dependant
 Requirements of algorithm
 Hardware

 Memory/CPU changes

 Performance studies are your friend

Work Wait

Work

Work Wait

 Wait

44

Jazz LCRC

Steps to Parallelize

 Identify computational hotspots in code

 Partition problem into smaller tasks

 Identify communication between tasks

 Agglomerate tasks into even larger tasks

 Map tasks to processors

12

45

Jazz LCRC

ProblemPartition

Communicate

Agglomerate

Map

Steps to Parallelize

46

Jazz LCRC

To Start

 Understand the algorithm
 Cannot parallelize a code without

understanding how it works.
 Might need entirely new algorithm

 Programming Model
 We will go with MP examples

47

Jazz LCRC

Parallel Pi
Simple First Example

 “Monte Carlo” Pi
 Enscribe a circle in a square
 Randomly generate points in the square
 Determine points also in the circle
 R = (Points in circle)/(Points in square)
 Pi ~ 4R

 Very easily parallel

48

Jazz LCRC

Monte Carlo Pi

 Pi ~ 4(Points in Circle/Points in Square)

13

49

Jazz LCRC

Pi: Serial Pseudo Code
NumPoints = 10000
NumInCircle = 0
do count = 1,NumPoints
 generate random number from 0-1
 xcoordinate = random1
 generate random number from 0-1
 ycoordinate = random2
 if coords are inside circle then
 NumInCircle++
 end if
end do
PI = 4.0*NumInCircle/NumPoints

50

Jazz LCRC

Parallel Pi PsuedoCode
NumPoints = 10000; NumInCircle = 0
NumProcs = number of processors
localNumPoints = NumPoints/NumProcs
find out if I am MASTER or WORKER
do j = 1,localNumPoints
 generate random coordinates
 if random coords are inside circle
 NumInCircle++
end do
if I am MASTER
 Receive NumInCircle from all processors
 compute PI
else if I am WORKER
 Send NumInCircle to master
endif

51

Jazz LCRC

Understand the Algorithm

 The Method
 Computation and data components
 New methods

 The Performance
 Where time is spent (Hotspots)
 gprof

These

Not these

The Loop:
do count=1,numPoints
 random coords
 are coords in circle?
end Loop

52

Jazz LCRC

Partition the Algorithm

 Functional partition
 Tasks based on function
 Can be totally different functions
 Ex: subroutines

 Data partition
 Splitting an array

 Both

Functional:
Loops over only localNumPoints
Calculate pi from points

14

53

Jazz LCRC

Domain Decomposition

 A common data partitioning
 Huge impact of load balancing

 Work per unit cell
 Dynamic assignment/grid

54

Jazz LCRC

Functional Decomposition

 Especially useful when there is less data
dependency

55

Jazz LCRC

Communication
Patterns

10

32
One to All
Personalized
(Scatter)

10

32
Collective
(Gather)

0 1 2 3

Shift

10

2

All to All10

32

Point to Point
SendRecv

10

32
One to All (Broadcast)

56

Jazz LCRC

Communicators

COMM1

COMM2

Groups of processors

MPI_COMM_WORLD

15

57

Jazz LCRC

Communication

 Same patterns for MP and data
parallel

 Local Communication
 Tasks communicate with small

numbers of local tasks
 Global Communication

 One or more tasks talk all non-local
tasks

 Communication patterns
 Static or runtime?

Each processor sends
 localNumPoints to master

(can be collective pattern)

58

Jazz LCRC

Two Common Global Ops

 MPI_BCAST(buffer, count, data type,
root, communicator)

MPI_REDUCE(send buffer, recv buffer,
count, data type, operation, root,
communicator)

 MPI SUM
MPI PROD
MPI MIN
MPI MAX

59

Jazz LCRC

Communication
Considerations

 Cost of communication
 Latency vs. Bandwidth
 Visibility of communication

 Can you stop worrying here?

 Blocking vs. Non-Blocking
 Synchronous vs. Non-Synchronous

 Scale of communication
 Local vs. global

 Efficiency
 Hardware, software, communication method

60

Jazz LCRC

Group Tasks

 Agglomerate with algorithm
and performance in mind

 What is worth replicating?
 Sometimes it is more efficient

to have data and computation
duplicated on processes

 Communication, Flexibility,
Software Design
 Competing for attention

One processor
collects
NumInCircle and
calculates Pi
No need to
agglomerate the
calculation of
localNumPoints

16

61

Jazz LCRC

Assign Groups to Processors

 Tasks that can execute concurrently on
different processes

 Tasks that communicate frequently on the
same processors

 Resources may also direct decisions
 Memory per cpu
 Bandwidth

Functional Decomposition
62

Jazz LCRC

The Diffusion Equation

63

Jazz LCRC

Diffusion Equation

 u(x,y,t) : Temperature of surface
 D : The diffusion coefficient
 Solve on a rectangular plane

 Zero temp at boundary (Dirichlet)
 Some initial temperature T

 Convenient because we know the solution

64

Jazz LCRC

Numerical Solution

 Solve with finite difference, forward time
centered
 Solution based on neighbors, previous time step

17

65

Jazz LCRC

Numerical Solution

 What the numerical solution is doing
 A simple to understand approximation

 Finite difference is discrete analog to the derivative
 Approximate solution based on the solution of the

neighbors from previous solution

66

Jazz LCRC

Pseudo Code
solnData(size of grid)
oldSolnData(size of grid)

Calculate dt,dx,dy,coefficients, etc
Set initial conditions
Set boundary conditions
Loop over timesteps
 Loop over x
 Loop over y
 solve for solnData(point)from oldSoln

67

Jazz LCRC

Profiling of the Serial
Diffusion Equation

 Spends entire time in loop
 Data Dependency

 One cell needs cell data from neighbors

 Granularity
 Limited to every time step - fine

 Load Balancing
 Equal work per cell

 Equal cells per processor
68

Jazz LCRC

Parallelize
 Partition Tasks

 Init boundary conditions
 Initial conditions
 Calculate constants
 Data structure split across processors

 Loop limited to local sections of solution

18

69

Jazz LCRC

Communication

 Calculate constants
 Broadcast, or each proc does it

 Boundary conditions
 None if the processors on boundaries calculate

 Initial conditions
 None: we choose constant initial conditions

 Solution data
 Must exchange the cells on borders of splits

70

Jazz LCRC

Border Cells / Ghost Points

 When splitting up
solnData, need data
from other processors.

 Need a layer of cells
from each processor

 Need to update each
time step

71

Jazz LCRC

Agglomerate

 Calculation of constants
 Duplicate this on processors

 It is cheap, the communication is not

 Boundary Conditions, Initial Conditions,
Solution Data
 These all operate on local section of an array

72

Jazz LCRC

Mapping

 Very natural mapping
 Divide the solution data (physical domain) as

evenly as possible over processors.
 Each agglomeration

 One section of physical domain

 Topology 0 1 32

0 3 21

19

73

Jazz LCRC

Parallel Psuedo Code
Determine numProcs
Divide grid evenly in x

over numProcs
Calculate

local xStart,xStop
xLen = xStop-xStart
solnData(LocalGrid)

oldSolnData(LocalGrid)
Calculate

dx, dy, dt

Coefficients

If LocalGrid on Boundary
Init Boundary Conditions

do x=gc,xLen+gc
do y=gc,yGrid+gc

initial con.

do timesteps
do x=gc,xLen+gc

do y=gc,yGrid+gc

solve
update ghost cells

enddo

74

Jazz LCRC

Initialization

 Completely new
 Discover

 Size of job
 Where this task is

 Fortran
 Interfaces almost

same
 No argc, argv
 Add integer ierr

 /* Declare MPI status*/
MPI_Status status;

/* Initialize the MPI API: */
MPI_Init(&argc, &argv);

/* Request my ID number: */
MPI_Comm_rank(MPI_COMM_WORLD,
 &myrank);

/* Total number of procs */
MPI_Comm_size(MPI_COMM_WORLD,
 &numProcs);

75

Jazz LCRC

Decomposition

 Mynni
 Grid points in x
 Divides over

numProcs

 Only one
dimension of
decomposition

/* Compute number of x-direction
 * grid points allocated to me,
 * mynni */
mynniSum = nni + numProcs;
for (k = 0; k < numProcs; k++)
{
 mynni[k] = nni / numProcs;
 if (k < (nni % numProcs))
 {
 mynni[k]++;
 }
 if (myrank == 0)
 printf("mynni[%i] = %i\n", k,
 mynni[k]);
}

76

Jazz LCRC

Topology

 Topology
 Often tied to networking

 Assumes linear
assignment
 Potential error
 Cartcreate, or, new

communicator

 Needed for ghostcells

/* Set the ranks of the
 * processors to the left
 * and right of me.
 * These are the processors
 * I will communicate with.
*/
rightProc = myrank + 1;
if(rightProc == numProcs)
 rightProc =
MPI_PROC_NULL;
leftProc = myrank - 1;
if(leftProc == -1)
 leftProc = MPI_PROC_NULL;

20

77

Jazz LCRC

Alternative Topology

 MPI Topology
functions can do this
for you

 Very useful for
straight forward
decompositions

integer dims[NDIM];
Integer periods[NDIM];

err=MPI_Dims_create (size,
NUM_DIMS, dims);

err=MPI_Cart_create(
 MPI_COMM_WORLD,
 ndims, &dims, &periods,
 reorder, &comm_cart);

for (i=0;i<NUM_DIMS;i++) {
err=MPI_Cart_shift(
 comm_cart, i, 1,
 &source, &dest);
}

78

Jazz LCRC

Ghostcell Exchange

0 1 32

Receives

Sends

ODD:
 send to left ; recv from left
send to right ; recv from right

EVEN:
recv from right; send to right
recv from leftt; send to left

MPI SEND(buffer,count,datatype,destination,tag,communicator)
MPI RECV(buffer,count,datatype,source,tag,communicator,status)

79

Jazz LCRC

Ghostcell Exchange

0 1 32

MPI_Sendrecv(send to left, recv from right)
MPI_Sendrecv(send to right, recv from left)

Receives

Sends

80

Jazz LCRC

Finalize

 Understand the algorithm
 Where can it be parallelized?
 Where does it need it?
 What packages have done it for me?

 Time

 Planning the parallel implementation can
save much time!

21

81

Jazz LCRC

I/O

 Very important to think about
 Use of scientific data library

 netCDF, pnetCDF

 Serial I/O
 All data to a single processor

 Parallel I/O
 All processes write to one or more files

82

Jazz LCRC

Parallel I/O

 Every process writes out a file
 Many files
 Easier to write code
 Post processing harder

 Logic to write out one file
 More time, More communication
 Library support: hdf5, pnetcdf, MPI I/O

83

Jazz LCRC

Scientific Data Libraries

 Can mirror your data structures
 Can reduce costly copies
 Easy to understand the process

 Libraries allow self discovery
 Easy content browsing
 Portability

84

Jazz LCRC

Data Library I/O Looks Like

Data Structures

File

0 1 32

Master

File

0 1 32

File

Single Alg

Serial I/O for Parallel Alg.

Parallel I/O for Parallel Alg.

22

85

Jazz LCRC

Jumpshot

 MPE Application from MCS
 Illustrates the communication patterns

and load balancing of application
 Understanding of applications
 Development of applications

86

Jazz LCRC

Web Resources

 Designing and Building Parallel Programs
 http://www-unix.mcs.anl.gov/dbpp/

 Tutorials from Maui High Performance
Computing Center
 http://www.mhpcc.edu/training/tutorials/Tutoria
ls.html

 LLNL HPC Training
 http://www.llnl.gov/computing/training/#worksho
ps

 Jazz Web Page
 http://www.lcrc.anl.gov

87

Jazz LCRC

Some Parallel Libraries

 Linear Algebra for Dense Systems
 The BLAS , LAPACK, BLACS, PBLAS,

ScaLAPACK

 Sparse Linear Algebra
 The Sparse BLAS, The PIM Library

 Other Parallel Libraries
 PESSL, NAG Parallel Libraries, PETSc

88

Jazz LCRC

A Few Tools
 Profiling

 Serial: gprof
 Parallel: jumpshot

 Debugging
 Serial: ddd, gdb,
 Totalview

 Parallel Scientific applications on Jazz
 Star-CD, IDL, MatLab, Gaussian98, Materials Studio

(MSI)
 Globus
 Intel, Portland Group, Nag

